
1

Argonne National Laboratory

Introduction to Parallel
Programming

Introduction to Concepts
and Methods

Katherine Riley

2

Jazz LCRC

Intent

 Assuming some knowledge about serial
computing, walk away from these
lectures with a basic understanding of:
 Parallel programming terminology
 Parallel computing architectures
 Parallel programming models
 Some existing methods and tools to help

3

Jazz LCRC

The Laboratory Computing
Resource Center (LCRC)

 Founded in 2002 to promote wide spread use of
high performance computing across the lab

 LCRC Application Engineers
 Jazz

 Compute - 350 nodes, each with a 2.4 GHz Pentium
Xeon

 Memory - 175 nodes with 2 GB of RAM, 175 nodes
with 1 GB of RAM

 Storage - 20 TB of clusterwide disk: 10 TB GFS and 10
TB PVFS

 Network - Myrinet 2000 4

Jazz LCRC

Outline

 Define Parallel Programming
 Parallel Architecture
 Parallel Programming Models
 When to Parallelize
 Overview: How to Parallelize Code

2

5

Jazz LCRC

What is Parallelism?

6

Jazz LCRC

Serial Computing

 Traditional computing model
 One CPU
 One copy of the data

 The CPU performs one
operation at a time.
 Single Instruction, Single Data

(SISD)

 Single task is implemented

CPU

Memory

7

Jazz LCRC

Parallel Computing

 Simultaneous use of multiple computing
resources to solve a problem.

 Parallel computing
 Breaks serial tasks into multiple tasks
 Works on tasks simultaneously
 Coordinates those tasks

8

Jazz LCRC

Why Parallel Compute?

 Potential faster time to solution
 CPU limitations

 Solve larger problems
 Memory limitations

 Cost savings
 Cheap PCs linked rather than more

expensive architectures

3

9

Jazz LCRC

Parallel Computing Hardware

 Single computer, multiple CPUs
 Multiple computers, connected by

network
 A combination of the two

10

Jazz LCRC

Parallel Programming Model

 Defines how the programmer creates and
coordinates parallel tasks

 Architecture, libraries, compilers, tools
 Create the model
 Directs parts of algorithm
 Does not map one to one to architecture

11

Jazz LCRC

Basic Parallel Architecture

12

Jazz LCRC

Why Talk About Architecture?

 Helps understand methods of
parallelizing codes

 Useful when parallelizing algorithms
 Can make parallel choices easier

 Useful for performance
 Get the buzz words

4

13

Jazz LCRC

Architecture Taxonomy

 SISD : Single Instruction, Single Data
 Traditional Serial Computing

 SIMD : Singe Instruction, Multiple Data
 Vector Pipelines

 MISD : Multiple Instruction, Single Data
 Rare

 MIMD : Multiple Instruction,Multiple Data
 Standard Parallel Computers

14

Jazz LCRC

SISD

 Standard serial
computing model

 One copy of the data

 Sequentially compute
 One instruction per

clock cycle
CPU

Memory

15

Jazz LCRC

SIMD

 Like SISD, but, each
instruction can
operate on multiple
data

 Multiple data
streams, one
instruction

 Vector machine

CPU

Memory

16

Jazz LCRC

MIMD

 Very common: All multiple processor
configurations

 Each processor executes a totally
independent instruction stream on
independent data stream

 Can be affordable
 Requires load balancing
 Can be difficult to program

5

17

Jazz LCRC

MIMD : Shared Memory

 Symmetric Multiprocessor
 SMP

 Each CPU is operating on
different data, even though
it is all in the same physical
memory

 Pros
 Easy for user to utilize
 Data sharing is fast

 Cons
 Bandwidth clogs

MemoryCPU CPU

CPU

CPU

18

Jazz LCRC

MIMD : Distributed Memory

 Massively Parallel
Processors (MPP)

 Multiple SISD systems
linked together with a
network.

 The network moves the
model from SISD to a MIMD

 Pro :Memory scalable
 Con

 Harder to program
 Bandwidth

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

19

Jazz LCRC

MIMD : Hybrid Distributed
Memory

 MPP Memory Arch.
 Multiple SMP-like

systems (PCs) linked
together with a network.

 The network moves the
model from SISD to a
MIMD

 Hybrid of shared
memory and distributed

Memory

C
PU

C
PU

Memory

Memory

Memory

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

20

Jazz LCRC

Memory Architectures

 Shared Memory
 Multiple processors, one memory

 Global address space
 Each process has equal access to memory
 UMA, CC-UMA, NUMA, CC-NUMA

 Distributed Memory
 Each processor has own address space
 Requires communication/messages to

exchange data with other processors

6

21

Jazz LCRC

Parallel Programming
Models

22

Jazz LCRC

What is a Parallel
Programming Model?

 Method by which the programmer creates
parallel tasks
 An abstraction of the architecture

 Models do not map one-to-one to architectures
 How to choose the model?

 Architecture
 Algorithm
 Capabilities/Time/Resources

23

Jazz LCRC

High-Level Models

 SPMD : Single Process, Multiple Data
 Every process

 running the same executable
 has different data
 can have logic to allow different processes to perform

different tasks

 MPI
 MPMD : Multiple Process, Multiple Data

 Every process
 can execute the same or a different executable
 will work on different data

24

Jazz LCRC

High-Level Models - Schematic

a.out a.out a.out a.out

a.out b.out c.out a.out

…

…

SPMD

MPMD

tasks

7

25

Jazz LCRC

Lower Level Models
 Shared Memory

 Global memory space
 Data Parallel

 Shared or Distributed memory splitting a larger data
structure

 Message Passing
 MPI, PVM, libraries using message passing

 Threads
 One process, one memory space, multiple threads

 Hybrid
 Ex: Threads and Message Passing

26

Jazz LCRC

Shared Memory and Threads

 Shared Memory - shmem
 Can be very easy to use
 Hardware often more expensive, less common

 Threads - OpenMP, POSIX
 Used on shared memory and hybrid systems
 Harder to use, but, very flexible
 Threads+Message Passing

 One of the best ways to make use of hybrid
systems

27

Jazz LCRC

Data Parallel

 Each processor works on different part of
the same data structure
 Data split across processors
 Messages are invisible

 Often built on top of message passing library

 SPMD approach

28

Jazz LCRC

Data Parallel Implementations

 Data parallel constructs added to code
and compiled with data parallel compiler

 Implementations
 F90/HPF Implementations
 Global Arrays

8

29

Jazz LCRC

Message Passing

 Set of processors only using local memory
 Processors communicate

 Send/Receive data
 Synchronization

 Library Implementations
 MPI, PVM

30

Jazz LCRC

Pro’s and Cons

 Shared Memory and Data Parallel
 Pro: Easy for programmer

 Normally done mostly by compiler

 Con: Memory ownership less clear
 Con: Potential higher cost of hardware

 Threads and Message Passing
 Pro: Can make excellent use of hybrid architectures
 Con: Everything done explicitly by programmer

 Need a good deal of knowledge to implement well

31

Jazz LCRC

Automatic Parallelization

 Fully Automatic
 Compiler parses code

 Programmer Directed
 In-line directives
 Compiler flags

32

Jazz LCRC

Problems with Automatic

 Wrong results may be produced
 Performance may degrade
 Limited to what it can identify

 Loops
 Complex code not helped

 Most automatic parallelization tools are
for Fortran (HPF)

So, we go with manual methods

9

33

Jazz LCRC

How To Parallelize

34

Jazz LCRC

When to Parallelize - Revisited

 Limited by memory
 After fully optimized serial version

 CPU and Memory usage

 Potential faster time to solution
 Dependant on algorithm.

 Without care, time could be longer!
 Problem Size, Algorithm, Hardware capabilities

 Resources

35

Jazz LCRC

Drawbacks to Parallelizing

 Time
 Learning, Implementing, Debugging

 Program Complexity
 Algorithms/Flow can be less clear
 Need more software support

 Reduces portability/reusability
 Tied to software availability
 Performance for few architectures

36

Jazz LCRC

Parallelization Process

 What code needs to be parallel and why
 PDE solve, search, image analysis, FFT …

 Has someone else done the work?
 Google is your friend

 Write the code
 If existing in serial, fully debug and optimize

 Debug, Test, and Optimize

10

37

Jazz LCRC

Design Considerations

 Granularity
 Ratio between computation and communication
 Fine Grain/Coarse Grain

 Data dependency
 A[I] = (A[I-1]+A[I+1])/2

 I/O
 Deadlock

 Parallelism gets trapped

38

Jazz LCRC

New Code Components

 Initialization
 Query parallel state

 Identify process
 Identify number of processes

 Exchange data between processes
 Local, Global

 Synchronization
 Barriers, Blocking Communication, Locks

 Finalization

39

Jazz LCRC

The Basic MPI Code

program hello
implicit none
include ’mpif.h’
integer id,nprocs,ierr
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,nprocs,ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,id,ierr)
print*,*”Hello from processor”,id,”out of”,nprocs
call MPI FINALIZE(ierr)
end

40

Jazz LCRC

I/O

 I/O is design and performance limiter
 Large communication and time costs

 Libraries in serial and parallel
 NetCDF, HDF5
 Even in serial can help with design

 Parallel File Systems improving
 Parallelizing I/O a big topic

 Similar process to parallelizing code
 Keep I/O to a minimum

11

41

Jazz LCRC

Deadlock

 A condition where two or more tasks are
waiting for a message that will never come

Receive
Task2, Y

Send
Task2, X

X = 4
Task 1

Receive
Task2, X

Send
Task2, Y

Y = 4
Task 2

 Change order of
send/recvs

 Change
algorithm

 Change to non-
blocking
communication

42

Jazz LCRC

Performance Considerations
 Amdahl’s Law

 Potential code speedup is a function of the
code that can be parallelized(P)

 Load Balancing
 Communication/Bandwidth
 I/O

N : Number of processes
S: 1-P, fraction of code that is serial

43

Jazz LCRC

Load Balancing

 Might be the hardest component
 Balance communication/computation

 Dependant
 Requirements of algorithm
 Hardware

 Memory/CPU changes

 Performance studies are your friend

Work Wait

Work

Work Wait

 Wait

44

Jazz LCRC

Steps to Parallelize

 Identify computational hotspots in code

 Partition problem into smaller tasks

 Identify communication between tasks

 Agglomerate tasks into even larger tasks

 Map tasks to processors

12

45

Jazz LCRC

ProblemPartition

Communicate

Agglomerate

Map

Steps to Parallelize

46

Jazz LCRC

To Start

 Understand the algorithm
 Cannot parallelize a code without

understanding how it works.
 Might need entirely new algorithm

 Programming Model
 We will go with MP examples

47

Jazz LCRC

Parallel Pi
Simple First Example

 “Monte Carlo” Pi
 Enscribe a circle in a square
 Randomly generate points in the square
 Determine points also in the circle
 R = (Points in circle)/(Points in square)
 Pi ~ 4R

 Very easily parallel

48

Jazz LCRC

Monte Carlo Pi

 Pi ~ 4(Points in Circle/Points in Square)

13

49

Jazz LCRC

Pi: Serial Pseudo Code
NumPoints = 10000
NumInCircle = 0
do count = 1,NumPoints
 generate random number from 0-1
 xcoordinate = random1
 generate random number from 0-1
 ycoordinate = random2
 if coords are inside circle then
 NumInCircle++
 end if
end do
PI = 4.0*NumInCircle/NumPoints

50

Jazz LCRC

Parallel Pi PsuedoCode
NumPoints = 10000; NumInCircle = 0
NumProcs = number of processors
localNumPoints = NumPoints/NumProcs
find out if I am MASTER or WORKER
do j = 1,localNumPoints
 generate random coordinates
 if random coords are inside circle
 NumInCircle++
end do
if I am MASTER
 Receive NumInCircle from all processors
 compute PI
else if I am WORKER
 Send NumInCircle to master
endif

51

Jazz LCRC

Understand the Algorithm

 The Method
 Computation and data components
 New methods

 The Performance
 Where time is spent (Hotspots)
 gprof

These

Not these

The Loop:
do count=1,numPoints
 random coords
 are coords in circle?
end Loop

52

Jazz LCRC

Partition the Algorithm

 Functional partition
 Tasks based on function
 Can be totally different functions
 Ex: subroutines

 Data partition
 Splitting an array

 Both

Functional:
Loops over only localNumPoints
Calculate pi from points

14

53

Jazz LCRC

Domain Decomposition

 A common data partitioning
 Huge impact of load balancing

 Work per unit cell
 Dynamic assignment/grid

54

Jazz LCRC

Functional Decomposition

 Especially useful when there is less data
dependency

55

Jazz LCRC

Communication
Patterns

10

32
One to All
Personalized
(Scatter)

10

32
Collective
(Gather)

0 1 2 3

Shift

10

2

All to All10

32

Point to Point
SendRecv

10

32
One to All (Broadcast)

56

Jazz LCRC

Communicators

COMM1

COMM2

Groups of processors

MPI_COMM_WORLD

15

57

Jazz LCRC

Communication

 Same patterns for MP and data
parallel

 Local Communication
 Tasks communicate with small

numbers of local tasks
 Global Communication

 One or more tasks talk all non-local
tasks

 Communication patterns
 Static or runtime?

Each processor sends
 localNumPoints to master

(can be collective pattern)

58

Jazz LCRC

Two Common Global Ops

 MPI_BCAST(buffer, count, data type,
root, communicator)

MPI_REDUCE(send buffer, recv buffer,
count, data type, operation, root,
communicator)

 MPI SUM
MPI PROD
MPI MIN
MPI MAX

59

Jazz LCRC

Communication
Considerations

 Cost of communication
 Latency vs. Bandwidth
 Visibility of communication

 Can you stop worrying here?

 Blocking vs. Non-Blocking
 Synchronous vs. Non-Synchronous

 Scale of communication
 Local vs. global

 Efficiency
 Hardware, software, communication method

60

Jazz LCRC

Group Tasks

 Agglomerate with algorithm
and performance in mind

 What is worth replicating?
 Sometimes it is more efficient

to have data and computation
duplicated on processes

 Communication, Flexibility,
Software Design
 Competing for attention

One processor
collects
NumInCircle and
calculates Pi
No need to
agglomerate the
calculation of
localNumPoints

16

61

Jazz LCRC

Assign Groups to Processors

 Tasks that can execute concurrently on
different processes

 Tasks that communicate frequently on the
same processors

 Resources may also direct decisions
 Memory per cpu
 Bandwidth

Functional Decomposition
62

Jazz LCRC

The Diffusion Equation

63

Jazz LCRC

Diffusion Equation

 u(x,y,t) : Temperature of surface
 D : The diffusion coefficient
 Solve on a rectangular plane

 Zero temp at boundary (Dirichlet)
 Some initial temperature T

 Convenient because we know the solution

64

Jazz LCRC

Numerical Solution

 Solve with finite difference, forward time
centered
 Solution based on neighbors, previous time step

17

65

Jazz LCRC

Numerical Solution

 What the numerical solution is doing
 A simple to understand approximation

 Finite difference is discrete analog to the derivative
 Approximate solution based on the solution of the

neighbors from previous solution

66

Jazz LCRC

Pseudo Code
solnData(size of grid)
oldSolnData(size of grid)

Calculate dt,dx,dy,coefficients, etc
Set initial conditions
Set boundary conditions
Loop over timesteps
 Loop over x
 Loop over y
 solve for solnData(point)from oldSoln

67

Jazz LCRC

Profiling of the Serial
Diffusion Equation

 Spends entire time in loop
 Data Dependency

 One cell needs cell data from neighbors

 Granularity
 Limited to every time step - fine

 Load Balancing
 Equal work per cell

 Equal cells per processor
68

Jazz LCRC

Parallelize
 Partition Tasks

 Init boundary conditions
 Initial conditions
 Calculate constants
 Data structure split across processors

 Loop limited to local sections of solution

18

69

Jazz LCRC

Communication

 Calculate constants
 Broadcast, or each proc does it

 Boundary conditions
 None if the processors on boundaries calculate

 Initial conditions
 None: we choose constant initial conditions

 Solution data
 Must exchange the cells on borders of splits

70

Jazz LCRC

Border Cells / Ghost Points

 When splitting up
solnData, need data
from other processors.

 Need a layer of cells
from each processor

 Need to update each
time step

71

Jazz LCRC

Agglomerate

 Calculation of constants
 Duplicate this on processors

 It is cheap, the communication is not

 Boundary Conditions, Initial Conditions,
Solution Data
 These all operate on local section of an array

72

Jazz LCRC

Mapping

 Very natural mapping
 Divide the solution data (physical domain) as

evenly as possible over processors.
 Each agglomeration

 One section of physical domain

 Topology 0 1 32

0 3 21

19

73

Jazz LCRC

Parallel Psuedo Code
Determine numProcs
Divide grid evenly in x

over numProcs
Calculate

local xStart,xStop
xLen = xStop-xStart
solnData(LocalGrid)

oldSolnData(LocalGrid)
Calculate

dx, dy, dt

Coefficients

If LocalGrid on Boundary
Init Boundary Conditions

do x=gc,xLen+gc
do y=gc,yGrid+gc

initial con.

do timesteps
do x=gc,xLen+gc

do y=gc,yGrid+gc

solve
update ghost cells

enddo

74

Jazz LCRC

Initialization

 Completely new
 Discover

 Size of job
 Where this task is

 Fortran
 Interfaces almost

same
 No argc, argv
 Add integer ierr

 /* Declare MPI status*/
MPI_Status status;

/* Initialize the MPI API: */
MPI_Init(&argc, &argv);

/* Request my ID number: */
MPI_Comm_rank(MPI_COMM_WORLD,
 &myrank);

/* Total number of procs */
MPI_Comm_size(MPI_COMM_WORLD,
 &numProcs);

75

Jazz LCRC

Decomposition

 Mynni
 Grid points in x
 Divides over

numProcs

 Only one
dimension of
decomposition

/* Compute number of x-direction
 * grid points allocated to me,
 * mynni */
mynniSum = nni + numProcs;
for (k = 0; k < numProcs; k++)
{
 mynni[k] = nni / numProcs;
 if (k < (nni % numProcs))
 {
 mynni[k]++;
 }
 if (myrank == 0)
 printf("mynni[%i] = %i\n", k,
 mynni[k]);
}

76

Jazz LCRC

Topology

 Topology
 Often tied to networking

 Assumes linear
assignment
 Potential error
 Cartcreate, or, new

communicator

 Needed for ghostcells

/* Set the ranks of the
 * processors to the left
 * and right of me.
 * These are the processors
 * I will communicate with.
*/
rightProc = myrank + 1;
if(rightProc == numProcs)
 rightProc =
MPI_PROC_NULL;
leftProc = myrank - 1;
if(leftProc == -1)
 leftProc = MPI_PROC_NULL;

20

77

Jazz LCRC

Alternative Topology

 MPI Topology
functions can do this
for you

 Very useful for
straight forward
decompositions

integer dims[NDIM];
Integer periods[NDIM];

err=MPI_Dims_create (size,
NUM_DIMS, dims);

err=MPI_Cart_create(
 MPI_COMM_WORLD,
 ndims, &dims, &periods,
 reorder, &comm_cart);

for (i=0;i<NUM_DIMS;i++) {
err=MPI_Cart_shift(
 comm_cart, i, 1,
 &source, &dest);
}

78

Jazz LCRC

Ghostcell Exchange

0 1 32

Receives

Sends

ODD:
 send to left ; recv from left
send to right ; recv from right

EVEN:
recv from right; send to right
recv from leftt; send to left

MPI SEND(buffer,count,datatype,destination,tag,communicator)
MPI RECV(buffer,count,datatype,source,tag,communicator,status)

79

Jazz LCRC

Ghostcell Exchange

0 1 32

MPI_Sendrecv(send to left, recv from right)
MPI_Sendrecv(send to right, recv from left)

Receives

Sends

80

Jazz LCRC

Finalize

 Understand the algorithm
 Where can it be parallelized?
 Where does it need it?
 What packages have done it for me?

 Time

 Planning the parallel implementation can
save much time!

21

81

Jazz LCRC

I/O

 Very important to think about
 Use of scientific data library

 netCDF, pnetCDF

 Serial I/O
 All data to a single processor

 Parallel I/O
 All processes write to one or more files

82

Jazz LCRC

Parallel I/O

 Every process writes out a file
 Many files
 Easier to write code
 Post processing harder

 Logic to write out one file
 More time, More communication
 Library support: hdf5, pnetcdf, MPI I/O

83

Jazz LCRC

Scientific Data Libraries

 Can mirror your data structures
 Can reduce costly copies
 Easy to understand the process

 Libraries allow self discovery
 Easy content browsing
 Portability

84

Jazz LCRC

Data Library I/O Looks Like

Data Structures

File

0 1 32

Master

File

0 1 32

File

Single Alg

Serial I/O for Parallel Alg.

Parallel I/O for Parallel Alg.

22

85

Jazz LCRC

Jumpshot

 MPE Application from MCS
 Illustrates the communication patterns

and load balancing of application
 Understanding of applications
 Development of applications

86

Jazz LCRC

Web Resources

 Designing and Building Parallel Programs
 http://www-unix.mcs.anl.gov/dbpp/

 Tutorials from Maui High Performance
Computing Center
 http://www.mhpcc.edu/training/tutorials/Tutoria
ls.html

 LLNL HPC Training
 http://www.llnl.gov/computing/training/#worksho
ps

 Jazz Web Page
 http://www.lcrc.anl.gov

87

Jazz LCRC

Some Parallel Libraries

 Linear Algebra for Dense Systems
 The BLAS , LAPACK, BLACS, PBLAS,

ScaLAPACK

 Sparse Linear Algebra
 The Sparse BLAS, The PIM Library

 Other Parallel Libraries
 PESSL, NAG Parallel Libraries, PETSc

88

Jazz LCRC

A Few Tools
 Profiling

 Serial: gprof
 Parallel: jumpshot

 Debugging
 Serial: ddd, gdb,
 Totalview

 Parallel Scientific applications on Jazz
 Star-CD, IDL, MatLab, Gaussian98, Materials Studio

(MSI)
 Globus
 Intel, Portland Group, Nag

